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Abstract
Video description is one of the most challenging
problems in vision and language understanding
due to the large variability both on the video and
language side. Models, hence, typically shortcut
the difficulty in recognition and generate plausi-
ble sentences that are based on priors but are not
necessarily grounded in the video. In this work,
we explicitly link the sentence to the evidence in
the video by annotating each noun phrase in a sen-
tence with the corresponding bounding box in one
of the frames of a video. Our dataset, ActivityNet-
Entities, augments the challenging ActivityNet
Captions dataset with 158k bounding box annota-
tions, each grounding a noun phrase. This allows
training video description models with these data,
and importantly, evaluate how grounded or “true”
such model are to the video they describe. To
generate grounded captions, we propose a novel
video description model which is able to exploit
these bounding box annotations. We demonstrate
the effectiveness of our model on our dataset, but
also show how it can be applied to image descrip-
tion on the Flickr30k Entities dataset. We achieve
state-of-the-art performance on video description
and image description and demonstrate our gener-
ated sentences are better grounded in the video.

1. Introduction
Image and video description models are frequently not well
grounded (Liu et al., 2017) which can increase their bias
(Hendricks et al., 2018) and lead to hallucination of ob-
jects (Rohrbach et al., 2018), i.e.the model mentions objects
which are not in the image or video e.g.because they might
have appeared in similar contexts during training. This
makes models less accountable and trustworthy, which is im-
portant if we hope such models will eventually assist people
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A  man  is seen standing in a  room  speaking to the camera while holding a  bike .

A group of  people  are in a  raft  down a  river .

w/o grounding supervision: A man is standing in a gym .
SotA: A man is seen speaking to the camera while holding a piece of exercise equipment.
GT: A man in a room holds a bike and talks to the camera.

w/o grounding supervision: A group of people are in a river.
SotA: A large group of people are seen riding down a river and looking off into the distance.
GT: Several people are on a raft in the water.

Figure 1. Word-level grounded video descriptions generated by
our model on two segments from our ActivityNet-Entities dataset.
We also provide the descriptions generated by our model without
explicit bounding box supervision, SotA (Zhou et al., 2018b) and
the ground-truth descriptions (GT) for comparison.

in need (Bigham et al., 2010; Rohrbach et al., 2017b). Ad-
ditionally, grounded models can help to explain the model’s
decisions to humans and allow humans to diagnose them
(Park et al., 2018). While researchers have started to dis-
cover and study these problems for image description (Liu
et al., 2017; Hendricks et al., 2018; Rohrbach et al., 2018;
Park et al., 2018), they are even more pronounced for video
description due to the increased difficulty and diversity, both
on the visual and the language side.

Fig. 1 illustrates this problem. A video description approach
(without grounding supervision) generated the sentence “A
man standing in a gym” which correctly mentions “a man”
but hallucinates “gym” which is not visible in the video.
Although a man is in the video it is not clear if the model
looked at the bounding box of the man to say this word (Hen-
dricks et al., 2018; Rohrbach et al., 2018). For the sentence
“A man [...] is playing the piano” in Fig. 2, it is important to
understand that which “man” in the image “A man” is refer-
ring to, to determine if a model is correctly grounded. Such
understanding is crucial for many applications when trying
to build accountable systems or when generating the next
sentence or responding to a follow up question of a blind
person: e.g.answering “Is he looking at me?” requires an
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understanding which of the people in the image the model
talked about.

The goal of our research is to build such grounded sys-
tems. As one important step in this direction, we collect
ActivityNet-Entities (short as ANet-Entities) which grounds
or links noun phrases in sentences with bounding boxes in
the video frames. It is based on ActivityNet Captions (Kr-
ishna et al., 2017a), one of the largest benchmarks in video
description. When annotating objects or noun phrases we
specifically annotate the bounding box which corresponds
to the instance referred to in the sentence rather than all
instances of the same object category, e.g.in Fig. 2, for the
noun phrase “the man” in the video description, we only
annotate the sitting man and not the standing man or the
woman, although they are all from the object category “per-
son”. We note that annotations are sparse, in the sense that
we only annotate a single frame of the video for each noun
phrase. ANet-Entities has a total number of 51.8k annotated
video segments/sentences with 157.8k labeled bounding
boxes, more details can be found in Sec. 3.

Our new dataset allows us to introduce a novel grounding-
based video description model that learns to jointly generate
words and refine the grounding of the objects generated in
the description. We explore how this explicit supervision
can benefit the description generation compared to unsuper-
vised methods that might also utilize region features but do
not penalize grounding.

Our contributions are three-fold. First, we collect our large-
scale ActivityNet-Entities dataset, which grounds video de-
scriptions to bounding boxes on the level of noun phrases.
Our dataset allows both, teaching models to explicitly rely
on the corresponding evidence in the video frame when gen-
erating words and evaluating how well models are doing in
grounding individual words or phrases they generated. Sec-
ond, we propose a grounded video description framework
which is able to learn from the bounding box supervision in
ActivityNet-Entities and we demonstrate its superiority over
baselines and prior work in generating grounded video de-
scriptions. Third, we show the applicability of the proposed
model to image captioning, again showing improvements in
the generated captions and the quality of grounding on the
Flickr30k Entities (Plummer et al., 2015) dataset.

2. Related Work
Video & Image Description. Early work on automatic
caption generation mainly includes template-based ap-
proaches (Das et al., 2013; Kulkarni et al., 2013; Mitchell
et al., 2012), where predefined templates with slots are first
generated and then filled in with detected visual evidences.
Although these works tend to lead to well-grounded meth-
ods, they are restricted by their template-based nature. More
recently, neural network and attention-based methods have

started to dominate major captioning benchmarks. Visual at-
tention usually comes in the form of temporal attention (Yao
et al., 2015) (or spatial-attention (Xu et al., 2015) in the im-
age domain), semantic attention (Li et al., 2018; Yao et al.,
2017; You et al., 2016; Zhou et al., 2017) or both (Pan et al.,
2017). The recent unprecedented success in object detec-
tion (Ren et al., 2015; He et al., 2017) has regained the
community’s interests on detecting fine-grained visual clues
while incorporating them into end-to-end networks (Ma
et al., 2018; Rohrbach et al., 2017a; Anderson et al., 2018;
Lu et al., 2018). Description methods which are based on
object detectors (Ma et al., 2018; Zanfir et al., 2016; Ander-
son et al., 2018; Lu et al., 2018; Das et al., 2013; Kulkarni
et al., 2013) tackle the captioning problem in two stages.
They first use off-the-shelf or fine-tuned object detectors to
propose object proposals/detections as for the visual recog-
nition heavy-lifting. Then, in the second stage, they either
attend to the object regions dynamically (Ma et al., 2018;
Zanfir et al., 2016; Anderson et al., 2018) or classify the
regions into labels and fill into pre-defined/generated sen-
tence templates (Lu et al., 2018; Das et al., 2013; Kulkarni
et al., 2013). However, directly generating proposals from
off-the-shelf detectors causes the proposals to bias towards
classes in the source dataset (i.e.for object detection) v.s.
contents in the target dataset (i.e.for description). One solu-
tion is to fine-tune the detector specifically for a dataset (Lu
et al., 2018) but this requires exhaustive object annotations
that are difficult to obtain, especially for videos. Instead of
fine-tuning a general detector, we transfer the object clas-
sification knowledge from off-the-shelf object detectors to
our model and then fine-tune this representation as part of
our generation model with sparse box annotations. With
a focus on co-reference resolution and identifying people,
(Rohrbach et al., 2017a) proposes a framework that can refer
to particular character instances and do visual co-reference
resolution between video clips. However, their method is
restricted to identifying human characters whereas we study
more general the grounding of objects.

Attention Supervision. As fine-grained grounding be-
comes a potential incentive for next-generation vision-
language systems, to what degree it can benefit remains
an open question. On one hand, for VQA (Das et al., 2017;
Zhang et al., 2019) the authors point out that the attention
model does not attend to same regions as humans and adding
attention supervision barely helps the performance. On the
other hand, adding supervision to feature map attention (Liu
et al., 2017; Yu et al., 2017) was found to be beneficial. We
noticed in our preliminary experiments that directly guid-
ing the region attention with supervision (Lu et al., 2018)
does not necessary lead to improvements in automatic sen-
tence metrics. We hypothesize that this might be due to the
lack of object context information and we thus introduce a
self-attention (Vaswani et al., 2017) based context encoding
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A man in a striped shirt is playing the piano on the street while people watch him.

Figure 2. An annotated example from our dataset. The dashed box
(“people”) indicates a group of objects.

in our attention model, which allows information passing
across all regions in the sampled video frames.

3. ActivityNet-Entities Dataset
In order to train and test models capable of explicit
grounding-based video description, one requires both lan-
guage and grounding supervision. Although Flickr30k En-
tities (Plummer et al., 2015) contains such annotations for
images, no large-scale description datasets with object lo-
calization annotation exists for videos. The large-scale Ac-
tivityNet Captions dataset (Krishna et al., 2017a) contains
dense language annotations for about 20k videos from Ac-
tivityNet (Caba Heilbron et al., 2015) but lacks grounding
annotations. Leveraging the language annotations from the
ActivityNet Captions dataset (Krishna et al., 2017a), we
collected entity-level bounding box annotations and cre-
ated the ActivityNet-Entities (ANet-Entities) dataset , a rich
dataset that can be used for video description with explicit
grounding. With 15k videos and more than 158k annotated
bounding boxes, ActivityNet-Entities is the largest anno-
tated dataset of its kind to the best of our knowledge.

When it comes to videos, region-level annotations come
with a number of unique challenges. A video contains more
information than can fit in a single frame, and video descrip-
tions reflect that. They may reference objects that appear
in a disjoint set of frames, as well as multiple persons and
motions. To be more precise and produce finer-grained an-
notations, we annotate noun phrases (NP) (defined below)
rather than simple object labels. Moreover, one would ide-
ally have dense region annotations at every frame, but the
annotation cost in this case would be prohibitive for even
small datasets. Therefore in practice, video datasets are
typically sparsely annotated at the region level (Gu et al.,
2018). Favouring scale over density, we choose to annotate

Dataset Domain # Vid/Img # Sent # Obj # BBoxes

Flickr30k Entities (Plummer et al., 2015) Image 32k 160k 480 276k

MPII-MD (Rohrbach et al., 2017a) Video �1k �1k 4 2.6k
YouCook2 (Zhou et al., 2018a) Video 2k 15k 67 135k
ActivityNet Humans (Yamaguchi et al., 2017) Video 5.3k 30k 1 63k
ActivityNet-Entities (ours) Video 15k 52k 432 158k

–train 10k 35k 432 105k
–val 2.5k 8.6k 427 26.5k
–test 2.5k 8.5k 421 26.1k

Table 1. Comparison of video description datasets with noun
phrase or word-level grounding annotations. Our ActivityNet-
Entities and ActivityNet Humans (Yamaguchi et al., 2017) dataset
are both based on ActivityNet (Caba Heilbron et al., 2015), but
ActivityNet Humans provides boxes only for person on a small
subset of videos. YouCook2 is restricted to cooking and only has
box annotations for the val and the test splits.

segments as sparsely as possible and annotate every noun
phrase only in one frame inside each segment.

Noun Phrases. Following (Plummer et al., 2015), we de-
fine noun phrases as short, non-recursive phrases that refer
to a specific region in the image, able to be enclosed within
a bounding box. They can contain a single instance or a
group of instances and may include adjectives, determin-
ers, pronouns or prepositions. For granularity, we further
encourage the annotators to split complex NPs into their
simplest form (e.g.“the man in a white shirt with a heart”
can be split into three NPs: “the man”, “a white shirt”, and
“a heart”).

3.1. Annotation Process

We uniformly sampled 10 frames from each video segment
and presented them to the annotators together with the cor-
responding sentence. We asked the annotators to identify
all concrete NPs from the sentence describing the video
segment and then draw bounding boxes around them in one
frame of the video where the target NPs can be clearly ob-
served. Further instructions were provided including guide-
lines for resolving co-references within a sentence, i.e.boxes
may correspond to multiple NPs in the sentence (e.g., a sin-
gle box could refer to both “the man” and “him”) or when to
use multi-instance boxes (e.g.“crowd”, “a group of people”
or “seven cats”). An annotated example is shown in Fig. 2.
It is noteworthy that 10% of the final annotations refer to
multi-instance boxes. We trained annotators, and deployed
a rigid quality control by daily inspection and feedback. All
annotations were verified in a second round. The full list of
instructions provided to the annotators, validation process,
as well as screen-shots of the annotation interface can be
found in the Appendix.

3.2. Dataset Statistics and Analysis

As the test set annotations for the ActivityNet Captions
dataset are not public, we only annotate the segments in the
training (train) and validation (val) splits. This brings the
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total number of annotated videos in ActivityNet-Entities to
14,281. In terms of segments, we ended up with about 52k
video segments with at least one NP annotation and 158k
NP bounding boxes in total.

Respecting the original protocol, we keep as our training
set the corresponding split from the ActivityNet Captions
dataset. We further randomly & evenly split the original
val set into our val set and our test set. We use all available
bounding boxes for training our models, i.e., including multi-
instance boxes. Complete stats and comparisons with other
related datasets can be found in Tab. 1.

From Noun Phrases to Objects Labels. Although we
chose to annotate noun phrases, in this work, we model
sentence generation as a word-level task. We follow the
convention in (Lu et al., 2018) to determine the list of object
classes and convert the NP label for box to a single-word ob-
ject label. First, we select all nouns and pronouns from the
NP annotations using the Stanford Parser (Manning et al.,
2014). The frequency of these words in the train and val
splits are computed and a threshold determines whether
each word is an object class. For ANet-Entities, we set the
frequency threshold to be 50 which produces 432 object
classes.

4. Description with Grounding Supervision
In this section we describe the proposed grounded video
description framework (see Fig. 3). The framework consists
of three modules: grounding, region attention and language
generation. The grounding module detects visual clues
from the video, the region attention dynamically attends on
the visual clues to form a high-level impression of the vi-
sual content and feeds it to the language generation module
for decoding. We illustrate three options for incorporating
the object-level supervision: region classification, object
grounding (localization), and supervised attention.

4.1. Overview

We formulate the problem as a joint optimization over the
language and grounding tasks. The overall loss function
consists of four parts:

L = Lsent + λαLattn + λcLcls + λβLgrd, (1)

where Lsent denotes the teacher-forcing language genera-
tion cross-entropy loss, commonly used for language gen-
eration tasks (details in Sec. 4.2). Lattn corresponds to the
cross entropy region attention loss which is presented in
Sec. 4.3. Lcls and Lgrd are cross-entropy losses that cor-
respond to the grounding module for region classification
and supervised object grounding (localization), respectively
(Sec. 4.4). The three grounding-related losses are weighted
by coefficients λα, λc, and λβ which we selected on the
dataset validation split.

We denote the input video (segment) as V and the
target/generated sentence description (words) as S.
We uniformly sample F frames from each video as
{v1, v2, . . . , vF } and define Nf object regions on sam-
pled frame f . Hence, we can assemble a set of regions
R = [R1, . . . , RF ] = [r1, r2, . . . , rN ] ∈ Rd×N to repre-
sent the video, where N =

∑F
f=1Nf is the total num-

ber of regions. We overload the notation here and use ri
(i ∈ {1, 2, . . . , N}) to also represent region feature embed-
dings, as indicated by fc6 in Fig. 3. We represent words in
S with one-hot vectors which are further encoded to word
embeddings yt ∈ Re where t ∈ {1, 2, . . . , T}, where T
indicates the sentence length and e is the embedding size.

4.2. Language Generation Module

For language generation, we adapt the language model
from (Lu et al., 2018) for video inputs, i.e.extend it to in-
corporate temporal information. The model consists of two
LSTMs: the first one for encoding the global video feature
and the word embedding yt into the hidden state htA ∈ Rm
where m is the dimension and the second one for language
generation (see Fig. 3c). The language model dynamically
attends on videos frames or regions for visual clues to gen-
erate words. We refer to the attention on video frames as
temporal attention and the one on regions as region atten-
tion.

The temporal attention takes in a sequence of frame-wise
feature vectors and determines by the hidden state how sig-
nificant each frame should contribute to generate a descrip-
tion word. We deploy a similar module as in (Zhou et al.,
2018b), except that we replace the self-attention context
encoder with Bi-directional GRU (Bi-GRU) which yields
superior results. We train with cross-entropy loss Lsent.

4.3. Region Attention Module

Unlike temporal attention that works on a frame level, the
region attention (Anderson et al., 2018; Lu et al., 2018)
focuses on more fine-grained details in the video, i.e., object
regions (Ren et al., 2015). We denote the region encoding as
R̃ = [r̃1, r̃2, . . . , r̃N ], more details are defined later in Eq. 5.
At time t of the caption generation, the attention weight over
region i is formulated as:

αti = w>α tanh(Wr r̃i +Whh
t
A), αt := Softmax(αt),

(2)
where Wr ∈ Rm×d, Wh ∈ Rm×m, wα ∈ Rm, and αt =
[αt1, α

t
2, . . . , α

t
N ]. The region attention encoding is then

R̃αt and along with the temporal attention encoding, fed
into the language LSTM.

Supervised Attention. We want to encourage the language
model to attend on the correct region when generating a
visually-groundable word. As this effectively assists the
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Figure 3. The proposed framework consists of three parts: the grounding module (a), the region attention module (b) and the language
generation module (c). Region proposals are first represented with grounding-aware region encodings. The language model then
dynamically attends on the region encodings to generate each word. Losses are imposed on the attention weights (attn-loss), grounding
weights (grd-loss), and the region classification probabilities (cls-loss). For clarity, the details of the temporal attention are omitted.

language model in learning to attend to the correct region,
we call this attention supervision. Denote the indicators of
positive/negative regions as γt = [γt1, γ

t
2, . . . , γ

t
N ], where

γti = 1 when the region ri has over 0.5 IoU with the GT
box rGT and otherwise 0. We regress αt to γt and hence
the attention loss for object word st can be defined as:

Lattn = −
N∑
i=1

γti logα
t
i. (3)

4.4. Grounding Module

Assume we have a set of visually-groundable object class
labels {c1, c2, . . . , cK}, short as object classes, where K is
the total number of classes. Given a set of object regions
from all sampled frames, the grounding module estimates
the class probability distribution for each region.

We define a set of object classifiers as Wc =
[w1, w2, . . . , wK] ∈ Rd×K and the learnable scalar bi-
ases as B = [b1, b2, . . . , bK]. So, a naive way to esti-
mate the class probabilities for all regions (embeddings)
R = [r1, r2, . . . , rN ] is through dot-product:

Ms(R) = Softmax(W>c R+B1>), (4)

where 1 is a vector with all ones, W>c R is followed by
a ReLU and a Dropout layer, and Ms is the region-class
similarity matrix as it captures the similarity between re-
gions and object classes. For clarity, we omit the ReLU and
Dropout layer after the linear embedding layer throughout
Sec. 4 unless otherwise specified. The Softmax operator is
applied along the object class dimension of Ms to ensure
the class probabilities for each region sum up to 1.

We transfer detection knowledge from an off-the-shelf de-
tector that is pre-trained on a general source dataset, i.e.,

Visual Genome (VG) (Krishna et al., 2017b), to our object
classifiers. We find the nearest neighbor for each of the K
object classes from the VG object classes according to their
distances in the embedding space (glove vectors (Penning-
ton et al., 2014)). We then initialize Wc and B with the
corresponding classifier, i.e., the weights and biases, from
the last linear layer of the detector.

On the other hand, we represent the spatial and temporal
configuration of the region as a 5-D tuple, including 4 val-
ues for the normalized spatial location and 1 value for the
normalized frame index. Then, the 5-D feature is projected
to a ds = 300-D location embedding for all the regions
Ml ∈ R300×N . Finally, we concatenate all three compo-
nents: i) region feature, ii) region-class similarity matrix,
and iii) location embedding together and project into a lower
dimension space (m-D):

R̃ =Wg[ R |Ms(R) |Ml ], (5)

where [·|·] indicates a row-wise concatenation and Wg ∈
Rm×(d+K+ds) are the embedding weights. We name R̃
the grounding-aware region encoding, corresponding to the
right portion of Fig. 3a. To further model the relations
between regions, we deploy a self-attention layer over R̃
(Vaswani et al., 2017; Zhou et al., 2018b). The final re-
gion encoding is fed into the region attention module (see
Fig. 3b).

So far the object classifier discriminates classes without
the prior knowledge about the semantic context, i.e., the
information the language model has captured. To incorpo-
rate semantics, we condition the class probabilities on the
sentence encoding from the Attention LSTM. A memory-
efficient approach is treating attention weights αt as this
semantic prior, as formulated below:

M t
s(R,α

t) = Softmax(W>c R+B1> + 1αt
>
), (6)
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where the region attention weights αt are determined by
Eq. 2. Note that here the Softmax operator is applied row-
wise to ensure the probabilities on regions sum up to 1.
To learn a reasonable object classifier, we can deploy a re-
gion classification task onMs(R) or a sentence-conditioned
grounding task on M t

s(R,α
t), with the word-level ground-

ing annotations from Sec. 3. Next, we describe them both.

Region Classification. We first define a positive region as
a region that has over 0.5 intersection over union (IoU) with
an arbitrary ground-truth (GT) box. If a region matches to
multiple GT boxes, the one with the largest IoU is the final
matched GT box. Then we classify the positive region, say
region i to the same class label as in the GT box, say class
cj . The normalized class probability distribution is hence
Ms[:, i] and the cross-entropy loss on class cj is

Lcls = − logMs[j, i]. (7)

The final Lcls is the average of losses on all positive regions.

Object Grounding. Given a visually-groundable word st+1

at time step t+1 and the encoding of all the previous words,
we aim to localize st+1 in the video as one or a few of
the region proposals. Supposing st+1 corresponds to class
cj , we regress the confidence score of regions M t

s [j, :] =
βt+1 = [βt+1

1 , βt+1
2 , . . . , βt+1

N ] to indicators γt as defined
in Sec. 4.3. The grounding loss for word st+1 is defined as:

Lgrd = −
N∑
i=1

γti log β
t+1
i . (8)

Note that the final loss on Lattn or Lgrd is the average of
losses on all visually-groundable words. The difference
between the attention supervision and the grounding su-
pervision is that, in the latter task, the target object cj is
known beforehand, while the attention module is not aware
of which object to seek in the scene.

5. Experiments
Datasets. We conduct most experiments and ablation
studies on the newly-collected ActivityNet-Entities dataset
on video description given the set of temporal segments
(i.e.using the ground-truth events from (Krishna et al.,
2017a)). We also demonstrate our framework can easily be
applied to image description and evaluate it on the Flickr30k
Entities dataset (Plummer et al., 2015). Note that we did
not apply our method to COCO captioning as there is no
exact match between words in COCO captions and object
annotations in COCO (limited to only 80). We use the same
process described in Sec. 3.2 to convert NPs to object labels.
Since Flickr30k Entities contains more captions, labels that
occur at least 100 times are taken as object labels, resulting
in 480 object classes (Lu et al., 2018).

Pre-processing. For ANet-Entities, we truncate captions
longer than 20 words and build a vocabulary on words with
at least 3 occurrences. For Flickr30k Entities, since the
captions are generally shorter and it is a larger corpus, we
truncate captions longer than 16 words and build a vocabu-
lary based on words that occur at least 5 times.

5.1. Compared Methods and Metrics

Compared methods. The state-of-the-art (SotA) video de-
scription methods on ActivityNet Captions include Masked
Transformer and Bi-LSTM+TempoAttn (Zhou et al., 2018b).
We re-train the models on our dataset splits with the original
settings. For a fair comparison, we use exactly the same
frame-wise feature from this work for our temporal atten-
tion module. For image captioning, we compare against two
SotA methods, Neural Baby Talk (NBT) (Lu et al., 2018)
and BUTD (Anderson et al., 2018). For a fair comparison,
we provide the same region proposal and features for both
the baseline BUTD and our method, i.e., from Faster R-
CNN pre-trained on Visual Genome (VG). NBT is specially
tailored for each dataset (e.g., detector fine-tuning), so we
retain the same feature as in the paper, i.e., from ResNet pre-
trained on ImageNet. All our experiments are performed
three times and the average scores are reported.

Metrics. To measure the object grounding and attention
correctness, we first compute the localization accuracy
(Grd. and Attn. in the tables) over GT sentences follow-
ing (Rohrbach et al., 2016; Zhou et al., 2018a). Given an
unseen video, we feed the GT sentence into the model and
measure the localization accuracy at each annotated object
word. We compare the region with the highest attention
weight (αi) or grounding weight (βj) against the GT box.
An object word is correctly localized if the IoU is over 0.5.
We also study the attention accuracy on generated sentences,
denoted by F1all and F1loc in the tables. In F1all, a re-
gion prediction is considered correct if the object word is
correctly predicted and also correctly localized. We also
compute F1loc, which only considers correctly-predicted
object words. See Appendix for details. Due to the sparsity
of the annotation, i.e., each object only annotated in one
frame, we only consider proposals in the frame of the GT
box when computing all the localization accuracies. For
the region classification task, we compute the top-1 clas-
sification accuracy (Cls. in the tables) for positive regions.
For all metrics, we average the scores across object classes.
To evaluate the sentence quality, we use standard language
evaluation metrics, including Bleu@1, Bleu@4, METEOR,
CIDEr, and SPICE, and the official evaluation script1. We
additionally perform human evaluation to judge the sentence
quality.

1https://github.com/ranjaykrishna/densevid eval



Grounded Video Description

Method λα λβ λc B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Unsup. (w/o SelfAttn) 0 0 0 23.2 2.28 10.9 45.6 15.0 14.9 21.3 3.70 12.7 6.89
Unsup. 0 0 0 23.0 2.27 10.7 44.6 13.8 2.42 19.7 0.28 1.13 6.06
Sup. Attn. 0.05 0 0 23.7 2.56 11.1 47.0 14.9 34.0 37.5 6.72 22.7 0.42
Sup. Grd. 0 0.5 0 23.5 2.50 11.0 46.8 14.7 31.9 43.2 6.04 21.2 0.07
Sup. Cls. 0 0 0.1 23.3 2.43 10.9 45.7 14.1 2.59 25.8 0.35 1.43 14.9
Sup. Attn.+Grd. 0.5 0.5 0 23.8 2.44 11.1 46.1 14.8 35.1 40.6 6.79 23.0 0
Sup. Attn.+Cls. 0.05 0 0.1 23.9 2.59 11.2 47.5 15.1 34.5 41.6 7.11 24.1 14.2
Sup. Grd. +Cls. 0 0.05 0.1 23.8 2.59 11.1 47.5 15.0 27.1 45.7 4.79 17.6 13.8
Sup. Attn.+Grd.+Cls. 0.1 0.1 0.1 23.8 2.57 11.1 46.9 15.0 35.7 44.9 7.10 23.8 12.2

Table 2. Results on ANet-Entities val set. “w/o SelfAttn” indicates self-attention is not used for region feature encoding. Notations: B@1
- Bleu@1, B@4 - Bleu@4, M - METEOR, C - CIDEr, S - SPICE. Attn. and Grd. are the object localization accuracies for attention
and grounding on GT sentences. F1all and F1loc are the object localization accuracies for attention on generated sentences. Cls. is
classification accuracy. All accuracies are in %. Top two scores on each metric are in bold.

Method B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

Masked Transformer (Zhou et al., 2018b) 22.9 2.41 10.6 46.1 13.7 – – – – –
Bi-LSTM+TempoAttn (Zhou et al., 2018b) 22.8 2.17 10.2 42.2 11.8 – – – – –

Our Unsup. (w/o SelfAttn) 23.1 2.16 10.8 44.9 14.9 16.1 22.3 3.73 11.7 6.41
Our Sup. Attn.+Cls. (GVD) 23.6 2.35 11.0 45.5 14.7 34.7 43.5 7.59 25.0 14.5

Table 3. Results on ANet-Entities test set. The top one score for each metric is in bold.

vs. Unsupervised vs. (Zhou et al., 2018b)

Judgments Judgments
Method % ∆ % ∆

About Equal 34.9 38.9

Other is better 29.3 6.5 27.5 6.1GVD is better 35.8 33.6

Table 4. Human evaluation of sentence quality. We present results
for our supervised approach vs. our unsupervised baseline and vs.
Masked Transformer (Zhou et al., 2018b).

5.2. Implementation Details

Region proposal and feature. We uniformly sample 10
frames per video segment (an event in ANet-Entities) and
extract region features. For each frame, we use a Faster
R-CNN detector (Ren et al., 2015) with ResNeXt-101 back-
bone (Xie et al., 2017) for region proposal and feature extrac-
tion (fc6). The detector is pretrained on Visual Genome (Kr-
ishna et al., 2017b). More details are in the Appendix.
Feature map and attention. The temporal feature map is
essentially a stack of frame-wise appearance and motion
features from (Zhou et al., 2018b; Xiong et al., 2016). The
spatial feature map is the conv4 layer output from a ResNet-
101 (Lu et al., 2018; He et al., 2016) model. Note that an
average pooling on the temporal or spatial feature map gives
the global feature. In video description, we augment the
global feature with segment positional information (i.e., to-
tal number of segments, segment index, start time and end
time), which is empirically important.

Hyper-parameters. Coefficients λα ∈ {0.05, 0.1, 0.5},
λβ ∈ {0.05, 0.1, 0.5}, and λc ∈ {0.1, 0.5, 1} vary in

the experiments as a result of model validation. We
set λα = λβ when they are both non-zero considering
the two losses have a similar functionality. The region
encoding size d = 2048, word embedding size e = 512
and RNN encoding size m = 1024 for all methods. Other
hyper-parameters in the language module are the same as
in (Lu et al., 2018). We use a 2-layer 6-head Transformer
encoder as the self-attention module (Zhou et al., 2018b).

5.3. Results on ActivityNet-Entities

5.3.1. VIDEO EVENT DESCRIPTION

Although dense video description (Krishna et al., 2017b)
further entails localizing the segments to describe on the
temporal axis, in this paper we focus on the language gener-
ation part and assume the temporal boundaries for events are
given. We name this task Video Event Description. Results
on the validation and test splits of our ActivityNet-Entities
dataset are shown in Tab. 2 and Tab. 3, respectively. Given
the selected set of region proposals, the localization upper
bound on the val/test sets is 82.5%/83.4%, respectively.

In general, methods with some form of grounding super-
vision work consistently better than the methods without.
Moreover, combining multiple losses, i.e.stronger super-
vision, leads to higher performance. On the val set, the
best variant of supervised methods (i.e., Sup. Attn.+Cls.)
ourperforms the best variant of unsupervised methods (i.e.,
Unsup. (w/o SelfAttn)) by a relative 1-13% on all the met-
rics. On the test set, the gaps are small for Bleu@1, ME-
TEOR, CIDEr, and SPICE (within ± 2%), but the super-
vised method has a 8.8% relative improvement on Bleu@4.
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Method VG Box B@1 B@4 M C S Attn. Grd. F1all F1loc Cls.

ATT-FCN* (You et al., 2016) 64.7 19.9 18.5 – – – – – – –
NBT* (Lu et al., 2018) 69.0 27.1 21.7 57.5 15.6 – – – – –
BUTD (Anderson et al., 2018) 69.4 27.3 21.7 56.6 16.0 24.2 32.3 4.53 13.0 1.84

Our Unsup. (w/o SelfAttn) 69.2 26.9 22.1 60.1 16.1 21.4 25.5 3.88 11.7 17.9
Our GVD model 69.9 27.3 22.5 62.3 16.5 41.4 50.9 7.55 22.2 19.2

Table 5. Results on Flickr30k Entities test set. * indicates the results are obtained from the original papers. GVD refers to our Sup.
Attn.+Grd.+Cls. model. “VG” indicates region features are from VG pre-training. The top one score is in bold.

The results in Tab. 3 show that adding box supervision
dramatically improves the grounding accuracy from 22.3%
to 43.5%. Hence, our supervised models can better localize
the objects mentioned which can be seen as an improvement
in their ability to explain or justify their own description.
The attention accuracy also improves greatly on both GT and
generated sentences, implying that the supervised models
learn to attend on more relevant objects during language
generation. However, grounding loss alone fails with respect
to classification accuracy (see Tab. 2), and therefore the
classification loss is required in that case. Conversely, the
classification loss alone can implicitly learn grounding and
maintains a fair grounding accuracy.

Comparison to existing methods. We refer to our best
model (Sup. Attn.+Cls.) as GVD (Grounded Visual De-
scription) and show that it sets the new SotA on ActivityNet
Captions for the Bleu@1, METEOR and SPICE metrics,
with relative gains of 2.8%, 3.9% and 6.8%, respectively
over the previous best (Zhou et al., 2018b). We observe
slightly inferior results on Bleu@4 and CIDEr (-2.8% and
-1.4%, respectively) but after examining the generated sen-
tences (see Appendix) we see that (Zhou et al., 2018b) gen-
erates repeated words way more often. This may increase
the aforementioned evaluation metrics, but the generated
descriptions are of lower quality. Another noteworthy obser-
vation is that the self-attention context encoder (on top of R̃)
brings consistent improvements on methods with grounding
supervision, but hurts the performance of methods without,
i.e., “Unsup.”. We hypothesize that the extra context and
region interaction introduced by the self-attention confuses
the region attention module and without any grounding su-
pervision makes it fail to properly attend to the right region,
something that leads to a huge attention accuracy drop from
14.9% to 2.42%.

Human Evaluation. Automatic metrics for evaluating gen-
erated sentences have frequently shown to be unreliable and
not consistent with human judgments, especially for video
description when there is only a single reference (Rohrbach
et al., 2017b). Hence, we conducted a human evaluation to
evaluate the sentence quality on the test set of ActivityNet-
Entities. We randomly sampled 329 video segments and
presented the segments and descriptions to the judges. From
Tab. 4, we observe that, while they frequently produce cap-

tions with similar quality, our GVD works better than the
unsupervised baseline (with a significant gap of 6.1%). We
can also see that our GVD approach works better than the
Masked Transformer (Zhou et al., 2018b) with a significant
gap of 6.5%. We believe these results are a strong indica-
tion that our approach is not only better grounded but also
generates better sentences, both compared to baselines and
prior work (Zhou et al., 2018b).

5.4. Results on Flickr30k Entities

We show the overall results on image description in Tab. 5
(test) and the results on the validation set are in the Ap-
pendix. The method with the best validation CIDEr score
is the full model (Sup. Attn.+Grd.+Cls.), which we further
refer to as the GVD model in the table. The upper bounds
on the val/test sets are 90.0%/88.5%, respectively. We see
that the supervised method outperforms the unsupervised
baseline by a relative 1-3.7% over all the metrics. Our GVD
model sets new SotA for all the five metrics with relative
gains up to 10%. In the meantime, object localization and
region classification accuracies are significantly boosted,
showing that our captions can be better visually explained
and understood.

6. Conclusion
In this work, we collected ActivityNet-Entities, a novel
dataset that allows joint study of video description and
grounding. We show how to leverage the noun phrase an-
notations to generate grounded video descriptions. We also
use our dataset to evaluate how well the generated sentences
are grounded. Besides, we showed in our comprehensive
experiments on video and image description, how the box
supervision can improve the accuracy and the explainability
of the generated description by not only generating sen-
tences but also pointing to the corresponding regions in the
video frames or image. According to automatic metrics and
human evaluation, on ActivityNet-Entities our model per-
forms state-of-the-art description quality with a significant
increase in grounding performance. Our adapted model on
image description also outperforms existing methods on the
Flickr30k Entities dataset.
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Daumé III, H. Midge: Generating image descriptions
from computer vision detections. In Proceedings of the

http://doi.acm.org/10.1145/1866029.1866080
http://doi.acm.org/10.1145/1866029.1866080


Grounded Video Description

13th Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pp. 747–756. Associ-
ation for Computational Linguistics, 2012.

Pan, Y., Yao, T., Li, H., and Mei, T. Video captioning
with transferred semantic attributes. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), volume 2, pp. 3, 2017.

Park, D. H., Hendricks, L. A., Akata, Z., Rohrbach, A.,
Schiele, B., Darrell, T., and Rohrbach, M. Multimodal
explanations: Justifying decisions and pointing to the
evidence. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

Pennington, J., Socher, R., and Manning, C. Glove: Global
vectors for word representation. In Proceedings of the
2014 conference on empirical methods in natural lan-
guage processing (EMNLP), pp. 1532–1543, 2014.

Plummer, B. A., Wang, L., Cervantes, C. M., Caicedo, J. C.,
Hockenmaier, J., and Lazebnik, S. Flickr30k entities:
Collecting region-to-phrase correspondences for richer
image-to-sentence models. In Proceedings of the IEEE
international conference on computer vision, pp. 2641–
2649, 2015.

Ren, S., He, K., Girshick, R., and Sun, J. Faster r-cnn:
Towards real-time object detection with region proposal
networks. In Advances in neural information processing
systems, pp. 91–99, 2015.

Rohrbach, A., Rohrbach, M., Hu, R., Darrell, T., and
Schiele, B. Grounding of textual phrases in images by
reconstruction. In European Conference on Computer
Vision, pp. 817–834. Springer, 2016.

Rohrbach, A., Rohrbach, M., Tang, S., Oh, S. J., and
Schiele, B. Generating descriptions with grounded and
co-referenced people. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR), 2017a.

Rohrbach, A., Torabi, A., Rohrbach, M., Tandon, N., Pal,
C., Larochelle, H., Courville, A., and Schiele, B. Movie
description. International Journal of Computer Vision
(IJCV), 2017b.

Rohrbach, A., Hendricks, L. A., Burns, K., Darrell, T., and
Saenko, K. Object hallucination in image captioning. In
Proceedings of the 2018 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 4035–4045,
2018.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. Atten-
tion is all you need. In Advances in Neural Information
Processing Systems, pp. 5998–6008, 2017.

Xie, S., Girshick, R., Dollár, P., Tu, Z., and He, K. Aggre-
gated residual transformations for deep neural networks.
In Computer Vision and Pattern Recognition (CVPR),
2017 IEEE Conference on, pp. 5987–5995. IEEE, 2017.

Xiong, Y., Wang, L., Wang, Z., Zhang, B., Song, H., Li,
W., Lin, D., Qiao, Y., Van Gool, L., and Tang, X. Cuhk
& ethz & siat submission to activitynet challenge 2016.
arXiv preprint arXiv:1608.00797, 2016.

Xu, K., Ba, J., Kiros, R., Cho, K., Courville, A., Salakhudi-
nov, R., Zemel, R., and Bengio, Y. Show, attend and
tell: Neural image caption generation with visual atten-
tion. In International conference on machine learning,
pp. 2048–2057, 2015.

Yamaguchi, M., Saito, K., Ushiku, Y., and Harada, T. Spatio-
temporal person retrieval via natural language queries. In
Proceedings of the IEEE International Conference on
Computer Vision, pp. 1453–1462, 2017.

Yao, L., Torabi, A., Cho, K., Ballas, N., Pal, C., Larochelle,
H., and Courville, A. Describing videos by exploiting
temporal structure. In Proceedings of the IEEE interna-
tional conference on computer vision, pp. 4507–4515,
2015.

Yao, T., Pan, Y., Li, Y., Qiu, Z., and Mei, T. Boosting
image captioning with attributes. In IEEE International
Conference on Computer Vision, ICCV, pp. 22–29, 2017.

You, Q., Jin, H., Wang, Z., Fang, C., and Luo, J. Image
captioning with semantic attention. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pp. 4651–4659, 2016.

Yu, Y., Choi, J., Kim, Y., Yoo, K., Lee, S.-H., and Kim, G.
Supervising neural attention models for video captioning
by human gaze data. In IEEE Conference on Computer
Vision and Pattern Recognition (CVPR 2017). Honolulu,
Hawaii, pp. 2680–29, 2017.

Zanfir, M., Marinoiu, E., and Sminchisescu, C. Spatio-
temporal attention models for grounded video captioning.
In Asian Conference on Computer Vision, pp. 104–119,
2016.

Zhang, Y., Niebles, J. C., and Soto, A. Interpretable visual
question answering by visual grounding from attention
supervision mining. In 2019 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 349–357.
IEEE, 2019.

Zhou, L., Xu, C., Koch, P., and Corso, J. J. Watch what
you just said: Image captioning with text-conditional
attention. In Proceedings of the on Thematic Workshops
of ACM Multimedia 2017, pp. 305–313. ACM, 2017.



Grounded Video Description

Zhou, L., Louis, N., and Corso, J. J. Weakly-supervised
video object grounding from text by loss weighting and
object interaction. Proceedings of the British Machine
Vision Conference (BMVC), 2018a.

Zhou, L., Zhou, Y., Corso, J. J., Socher, R., and Xiong, C.
End-to-end dense video captioning with masked trans-
former. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, pp. 8739–8748,
2018b.


