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Abstract
Identifying the temporal segments in a video that
contain content relevant to a category or task is a
difficult but interesting problem. This has applica-
tions in fine-grained video indexing and retrieval.
Part of the difficulty in this problem comes from
the lack of supervision since large-scale annota-
tion of localized segments containing the content
of interest is very expensive. In this paper, we
propose to use the category assigned to an entire
video as weak supervision to our model. Using
such weak supervision, our model learns to do
joint video level categorization and localization
of content relevant to the category of the video.
This can be thought of as providing both a clas-
sification label and an explanation in the form
of the relevant regions of the video. Extensive
experiments on a large scale data set show our
model can achieve good localization performance
without any direct supervision and can combine
signals from multiple modalities like speech and
vision.

1. Introduction
The task of video categorization is to assign a category for
a video at the level of the entire video. Videos can be long
and even if a long video contains very short segments that
exhibit content indicative of that category, that category
will be assigned to that video. This lends directly into
the motivation for the task of video localization where the
aim is to identify those segments in a video with content
relevant to the category of that video. Video categorization
has applications in video indexing and retrieval. Video
localization can further aid these applications by providing
more precise and fine-grained indexing and retrieval.

Both video categorization and localization have been exten-
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sively studied in the computer vision literature (Brezeale
& Cook, 2008; Weinland et al., 2011). However, localiza-
tion methods typically require annotation that specify the
temporal segments containing relevant content for the cat-
egory of interest. Obtaining such fine-grained annotation
is expensive and difficult to collect. However, annotation
for the category of a video is relatively cheap and is readily
available in some domains. Therefore, learning models for
video localization task using the categories for the video
categorization task as weak supervision signals is a practical
solution.

In this paper, we propose a model that can be trained using
the categories at the video level but can be used for predict-
ing both categories at the video level and for predicting the
temporal segments inside the video that contain relevant
content for that category. We use a bidirectional recurrent
neural network for aggregating information from each time
step and then an attention network that provides a weight for
each time step. The weighted average across all time steps is
then sent to a feed-forward network followed by a softmax
layer to output the category of the video. This network is
trained using the categories of the videos, but at test time,
the attention weights can indicate the hot spots inside the
video. Thus, our model can be used for both classification
and localization.

Another advantage of our model is that it is a multi-modal
model that combines the speech transcripts and visual fea-
tures in a simple but effective way. In most real-word ap-
plications, solving both the video categorization and local-
ization tasks require a multi-modal understanding. As we
show experimentally, both modalities bring significant gains
for our model, thus validating our hypothesis that multi-
modality is crucial.

We conduct experiments on a large scale data set with
roughly 200K videos, across a wide range of topics. Our
extensive experiments show that our model learns to lo-
calize using weak supervision at video level and different
modalities bring cumulative gains for our model.

The rest of the paper is organized as follows. Section 2
discusses the related work. Section 3 contains the in-depth
description of our model. A brief description of our data
set is presented in Section 4. We present our experimental
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results in Section 5. Finally, section 6 ends the paper with
some concluding remarks.

2. Related Work
Temporal action localization has been an active research
topic recently. However, most of the works have focused on
fully supervised setting, where there is a sufficiently large
set of videos annotated with localization for the actions of
interest(Caba Heilbron et al., 2016; Escorcia et al., 2016;
Richard & Gall, 2016; Yeung et al., 2016; Yuan et al., 2016;
Shou et al., 2016; 2017; Lin et al., 2017; Heilbron et al.,
2017; Zhao et al., 2017; Gao et al., 2017; Xu et al., 2017).
Unfortunately, in most practical applications, such a large
set of annotations for videos with temporal segmentation
is not readily available. It is also very expensive to collect
these annotations for a sufficiently large number of videos.
Therefore, there is a need to resort to weakly supervised
approaches for training localization models.

Several works in the literature have proposed using the cat-
egory at the video level as a weak supervision for training
models for localization(Singh & Lee, 2017; Wang et al.,
2017; Shou et al., 2018). However, these approaches rely
on visual features only. As shown in our experiments, for
many applications, visual features alone may not be suffi-
cient since the action or category of interest may depend
on the speech in that video. Different from these localiza-
tion models, our model is multi-modal one, that can use
both speech and visual features in videos for joint action
localization and classification.

Our task is a restricted version of the task of the spatio-
temporal localization (Bhoi, 2019; Tian et al., 2013; Ma
et al., 2013). In multi-modal setting, spatial localization for
categories that depend on speech may not be informative.
In such multi-modal cases, temporal localization is more
appropriate.

3. Model Architecture
Assume a video has length of M seconds and the tran-
script in the video contains N words w1, w2, . . . , wN .
Let the word embeddings of these N words be given by
u1, u2, . . . , uN . We extract dense visual features for every
integer time stamp of the video. Let these visual feature vec-
tors be given by v1, v2, . . . , vM . Let ti be the time stamp of
the utterance of the word wi rounded to the nearest integer.
The multi-modal embedding in our work is a concatenation
of a word embedding and the visual embedding at the time
stamp of the word. For word wi, it is given by [ui, vti]. If
no word is spoken at an integer time stamp in the video, we
assume the token “NO ASR” is spoken at that time stamp.
Thus each time stamp has associated with it both a visual
feature vector and a real or notional word.

Using the alignment outlined above, we convert the se-
quence of spoken word vectors and visual vectors into a
sequence of multi-modal vectors. Let the sequence of vec-
tors be x1, x2, . . . , xL.

The architecture of our model is shown in Figure 1. We use
a bidirectional LSTM (Hochreiter & Schmidhuber, 1997)
as the recurrent network in our model. We feed the multi-
modal vectors x1, x2, . . . , xL to the LSTM network and
output a sequence of hidden vectors h1, h2, . . . , hL.

−→
hi = LSTMforward(xi, hi−1) (1)

←−
hi = LSTMbackward(xi, hi+1) (2)

hi = [
−→
hi ,
←−
hi ] (3)

The LSTM output vectors h1, h2, . . . , hL are then sent
to an attention layer (Denil et al., 2012; Bahdanau et al.,
2014) to produce a normalized weight for every output
â1, â2, . . . , âL.

ai = watt · hi (4)

âi =
ai√∑L
i=1 a

2
i

(5)

Here, watt is the attention layer vector that is used for pro-
ducing the attention scores. Then a weighted sum of the
LSTM output vectors is sent to a feed-forward network fol-
lowed by a softmax layer. The feed-forward network f
consists of two layers with ReLU activation function.

gi =

L∑
i=1

âihi (6)

ŷi = softmax(f(gi)) (7)

Training
During training, we minimize the cross entropy loss mea-
sured over a the training data D. Assume there are C cate-
gories in the data set. The loss is given by:

l = − 1

|D|

|D|∑
i=1

C∑
c=1

yic log ŷic (8)

Training proceeds via gradient descent at the minibatch
level.

Prediction of Video Category
During test time, the category of a video is predicted by:

l∗ = argmaxl ŷl (9)

Prediction of Temporal Segment
For a fixed duration D, we find non-overlapping temporal
segments of duration D that have the highest sum of at-
tention scores in an iterative manner. Let H be the list of
hidden vectors corresponding to multi-modal vectors that
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Figure 1. Architecture of our Model

are derived from words spoken in the time interval (b, e)
and let Â be the corresponding list of normalized attention
scores. The score for the interval (b, e) is given by:

s(b, e) =
∑
â∈Â

â (10)

We calculate the top 3 non-overlapping temporal segments
of duration D with the highest scores in a greedy manner.
At every step, we find the temporal segment with the highest
score and remove all time stamps that belong to that segment
and find the next temporal segment with the highest score
and continue. By design, the selected temporal segments
are non-overlapping.

4. Dataset
Our data set consists of a set of videos grouped into five
broad categories: “Pornography”, “Graphic Disturbing”,
“Hate-speech”, “Bullying”, and benign. We list the number
of examples and average length of videos per category in
Table 1. The data set is highly imbalanced, with categories
like “Pornography” and “Graphic Disturbing” are relatively
dominant in our data set. The remaining categories are
much less frequent. However, videos from the category of
“Hate-speech” are the longest. Table 1 shows that our data
set is a large scale data set with class imbalance in terms of
both frequencies and length of videos.

Although there exist several data sets for studying video
categorization and localization(Soomro et al., 2012; Jiang
et al., 2014; Kay et al., 2017; Gu et al., 2018; Karpathy
et al., 2014), most of them focus on identifying and local-
izing human actions that are atomic and simplistic. For
example, the dominant categories in the widely used data
set UCF-101(Soomro et al., 2012) include “Shaving Beard”,
“Playing Tennis” and “Playing Dhol”. These actions tend

Table 1. Data set Statistics

LABEL NUMBER OF
EXAMPLES

AVERAGE
LENGTH IN
SEC

PORNOGRAPHY 37059 98
GRAPHIC DISTURBING 17792 82
HATE-SPEECH 8217 1270
BULLYING 9490 28

BENIGN 135314 344

TOTAL 208782 305

to be atomic in nature and do not require understanding of
other modalities except vision. The data set we consider in
our work consists of categories of complex human actions
that are compositions of many atomic actions and that re-
quire both speech and visual understanding. One objective
of our research is to explore interesting research regarding
combination of signals from multiple modalities like speech
and vision.

We use a state-of-the-art automatic speech recognition sys-
tem (ASR) to extract the speech transcript along with the
time stamps where the words are spoken. We also use a
state-of-the-art video categorization system to extract the
penultimate embedding (before the softmax layer) once per
second for each video. Details of the ASR and video cate-
gorization models are provided below.

4.1. ASR system

Each video in our data set is processed through an auto-
matic speech recognition (ASR) system to produce a speech
transcript. The speech recognition system was built us-
ing a hybrid BLSTM-HMM framework. The lexicon is
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a graphemic lexicon with character sequences as pronun-
ciations. The acoustic model is an LC-BLSTM (latency-
controlled bi-directional LSTM (Zhang et al., 2016; Xue &
Yan, 2017), trained with cross-entropy and lattice-free MMI
criterion (Povey et al., 2016). It takes 80-dimensional log
mel-filterbank coefficients as the input, and posterior over
around 9000 tied context-dependent graphemes (clustered
by a decision tree) as the output. The language model is a
5-gram model.

4.2. Video Categorization System

The model used by the video categoriztion system is
ResNeXt3D which is an efficient clip-based model. It takes
a short clip of frames as input to the model. Compared to
the frame based model, or image model, a clip-based model
can capture motion information by 3D convolution, and
performs better on video datasets. For details, readers can
refer to the paper (Tran et al., 2018). ResNeXt3D achieves
state-of-the-art result on benchmark video datasets.

5. Experimental Results
Hyperparameters
For word vectors, we use 300 dimensional fast-text em-
beddings (Bojanowski et al., 2017). These embeddings are
tuned as part of the training process. The dimension of video
embedding obtained from ResNext3D model is 2048. We
project the video embedding to a lower dimension of 500
using a linear layer learned as part of the training process.
The subsequent LSTM network consists of a single layer,
with input dimension of 800 and dimension of 1024 for each
direction for the output hidden vectors. The hidden vectors
from the backward & forward LSTMs are concatenated, re-
sulting in 2048 dimensionality for each hidden vector. The
attention layer is a 2048 dimensional vector that produces
a single score for each of these hidden vectors. The sub-
sequent feed-forward MLP consists of two feed-forward
layers each with 2048 neurons with ReLU activation func-
tion. We use a drop-out of 0.2 on these two layers and a
drop-out of 0.15 for LSTM weights. We use the ADAM
optimizer (Kingma & Ba, 2014) with a scheduler for re-
ducing learning rate by 0.25 every time the validation loss
plateaus. Our initial learning rate is 0.00008 and we train for
32 epochs. We have tuned all the hyper-parameters on the
development set. We use the distributed training framework
of pytorch using 4 nodes and 8 gpus per node.

We randomly split our data set into training, validation and
test (70% training, 15% validation and 15% test). Since
our model is capable of both video level classification and
localization, we evaluate our model on both respects.

Video Categorization Results
Figure 2 shows the results for video categorization (F scores)

for every category except the “benign” category in our data
set.

For all categories except “Bullying”, the multi-modal model
outperforms the “ASR only” and “Visual Only” models. For
the categories of “Pornography” and “Graphic Disturbing”,
the improvement is small but statistically significant. This
makes sense because intuitively, we feel that identification
of these two categories should be benefited by visual fea-
tures most. For the category of “Hate-speech”, multi-modal
model gives significant improvements over using a model
that uses only one modality (31% over “ASR only” and
11% over “Visual only”). This also seems intuitive since
“Hate-speech” can be demonstrated either by speech or by
imagery. Often, “Hate-speech” is also demonstrated by the
combination of benign speeches and benign images where
the combination of those specific images and speech make
them Hate-speech. One exception to this trend is the cate-
gory of videos marked as “Bullying”. For this category of
videos, the visual model performs the best. This is due to
the fact that the videos for this category are relatively short
and almost 80% videos do not contain significant amount
of ASR transcripts.

If we compare the models of “Visual only” and “ASR only”,
we see that the “Visual only” model outperforms the “ASR
only” model in all categories. Even for the category of
“Hate-speech”, “Visual only” model outperforms the “ASR
only” model. In addition to having relatively high speech
recognition error rates on out-of-domain data, many videos
contain speech in foreign languages and our model was
trained on videos containing English ASR only, thus re-
sulting in some data without transcriptions. We leave the
exploration using foreign language ASR and multi-lingual
embeddings for text as a future work.

Video Localization Results
For evaluating localization results, we produced the top 3
temporal segments of duration 5s each for 271 videos. The
segments were then evaluated to be either correct (contains
evidence for the video level category) or incorrect (not rele-
vant for categorization of the video). 83% of the segments
were correct. Even better, for a given video, at least one of
the three segments flagged the offensive content 93% of the
time.

In addition, we also performed a qualitative evaluation of
the topmost temporal segments predicted by our model. Fig-
ure 3 shows examples of temporal segments predicted by
our model for each of the category except “benign” and
“Pornography”. We identify the three temporal segments
with duration of 5s that have the highest sum of attention
scores and highlight these segments on the time line of the
video with red, orange and yellow colors. Since each seg-
ment is 5s long, we randomly select a time stamp inside
that segment and show the image or thumbnail for that time
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Figure 2. Relative Gain in video categorization results (F scores) for the multi-modal model over “ASR only” and “Visual Only” models,
broken down across different categories. The multi-modal model outperforms single-modal model on 3 out of 4 categories.

stamp. Additionally, we also show the transcripts in a win-
dow around that time stamp with profanities replaced by
‘*’. To protect confidentiality, we have replaced the actual
images with commercially available public images that ex-
hibit similar semantics. Similarly, the actual transcripts have
been replaced with paraphrased generic text with similar
semantics, and without any personally identifiable informa-
tion.

We notice that the temporal segments predicted by our
model make intuitive sense. For example, temporal seg-
ments predicted by our model for videos belonging to the
category of “Hate-speech” typically contain images of an-
gry or disturbed persons. Those segments also frequently
have offensive slurs inside the speeches(Figure 3-a). In Fig-
ure 3-b, we show an image and associated transcript for
the temporal segment predicted by our model for one of
the videos belonging to the category of “Graphic Disturb-
ing”. The image depicts surgery and the speech describes
the conversation among the surgeons. Finally, Figure 3-(c
& d) contains two example images and transcripts for the
category of “Bullying”. The images corresponding to the
temporal segments predicted by the model for this category
tend to show anger and fighting whereas the speech con-
tain slurs directed to a specific person. In all cases, we
can see that our model has produced very accurate tempo-
ral segments, without any direct supervision at the level of
segments.

6. Conclusion
In this paper, we proposed a model architecture that can be
trained with the category of a video as a weak supervision
and the model can then be used for both categorization of
the video and localization of the content that can explain the
category. We evaluated our model on a large-scale data set
and provided both quantitative and qualitative assessments
of our model. In future, we want to extend our multi-modal
framework to the audio modality by using the embeddings
produced by an audio event detection model as additional
input to our multi-modal model.
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