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Abstract
We present our recent efforts on leveraging visual
modality for automated speech recognition (ASR)
error correction. A visually grounded attention-
based Sequence-to-Sequence (S2S) model is
trained to correct contextual and functional word
errors in transcripts/outputs of unimodal ASR sys-
tems. Specifically, our error correction model ad-
dress the problem of semantic gap in multimodal
fusion, which allows high-level visual features
to be combined with comparably high-level text
features. Visual-semantic joint embedding and
language model are used to rescore the n-best list
output by the error correction model. Tested on
the How2 dataset, visually grounded error correc-
tion led to only marginal improvements over the
unimodal ASR system. We provide error analysis
on the output of visually grounded ASR error cor-
rection model, and propose a potential solution
based on the analysis.

1. Introduction
Humans are able to accurately recognize speech even in the
presence of surrounding noise or accent by utilizing various
other contexts. For instance, when listening to machine
learning lectures, we know that the probability of words like
‘backpropagation’ and ‘convolutional’ being spoken by a
lecturer is high, and use this context to recognize the speech
better. Given humans’ multimodal perception systems, vi-
sual information would be one of those contexts that can
help speech recognition as demonstrated in the well-known
McGurk effect (McGurk & MacDonald, 1976).

In recent years, deep neural networks have revolutionized
signal processing and machine learning research by achiev-
ing state-of-the-art results on many problems in computer
vision (He et al., 2015), speech processing (Chan et al.,
2015), and natural language processing (Vaswani et al.,
2017). In particular, (Chan et al., 2015; Chiu et al., 2017;
Bahdanau et al., 2016) have shown that Recurrent Neural
Networks (RNN) based sequence-to-sequence (S2S) mod-
els with attention mechanism can be successfully exploited
for automated speech recognition (ASR). While the above
approaches have demonstrated promising performance in

terms of Word Error Rate (WER), they are still limited in
the sense that they do not utilize additional contexts such as
visual information unlike humans.

Accordingly, there have been several recent attempts to im-
prove performance of ASR by incorporating multimodal in-
formation as additional contexts into existing ASR systems
(Sanabria et al., 2018). However, combining features from
different modalities by simply concatenating multimodal
features is inefficient due to the semantic gap between the
modalities. For example, the features in most ASR systems
are characters, produced as the output of decoder, and they
are low-level features compared to visual features such as
scene contexts, motions and objects in videos.

Therefore, in this paper, we consider augmenting traditional
unimodal ASR systems with multimodal information in a
more natural way. We introduce the interaction between
modalities at specific points in the neural network architec-
ture, allowing modules to leverage signals from modalities
with similar semantic level. To this end, we propose a
visually grounded error correction model and a rescoring
scheme, all of which fuse visual information with high-level
text features. Tested on the How2 dataset (Sanabria et al.,
2018), proposed approaches led to only marginal improve-
ments over the unimodal baseline. We provide extensive
analyses on visually grounded error correction on ASR,
and propose several future research directions based on the
analyses.

2. Related work
2.1. Automated speech recognition

Listen-Attend-Spell, referred to as LAS (Chan et al., 2015)
is among the first end-to-end trained neural networks to
achieve close to the state-of-the-art results in speech recogni-
tion. They proposed a novel pyramidal bidirectional LSTM
(pBLSTM) and constructed an encoder-decoder architec-
ture with pBLSTMs and attention mechanism. Based on
LAS, (Chiu et al., 2017) introduced a handful of techniques
including multi-headed attention and scheduled sampling
which significantly improved the performance of S2S-based
ASR systems. Though all these works show promising re-
sults, their methods do not take multimodal information into
account.
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Recognizing the importance of multimodal processing,
(Palaskar et al., 2018; Caglayan et al., 2018) proposed vi-
sually grounded speech recognition systems. They first
extracted visual features by using object recognition (He
et al., 2016) and action recognition models (Hara et al.,
2018), and integrated them with hidden states in encoder
and decoder of LAS model. While their method gives
improvement over unimodal speech recognition systems,
feature-level mismatch between visual features and hidden
states of encoder/decoder makes such concatenation possi-
bly sub-optimal.

2.2. Error correction

S2S models (Sutskever et al., 2014) have been used in text
correction for both spelling (typing) errors and grammar
errors. Spelling error correction is usually considered in
the keyboard typing decoding context. (Ghosh & Kristens-
son, 2017) developed a S2S model for text typo correction
by combining of character-level CNN and GRU encoder
with word-level GRU decoder. While their method shows
promising performance on Twitter typo dataset, it is only
applicable for short phrases with the word length of 7.

Neural network models have also been used in Grammar
error correction (GEC). (Yuan & Briscoe, 2016) applied
neural machine translation (NMT) S2S model to tackle the
GEC task. The rare word problem is addressed using an
unsupervised aligner. An alternative approach in (Xie et al.,
2016) is to apply a character-level S2S model with attention
mechanism, but it has limited capability in leveraging high-
level information. Combing the char- and word-level S2S
models, (Ji et al., 2017) developed a neural hybrid model
for GEC task similar to (Luong & Manning, 2016), and
achieved higher scores than word-level GEC model.

All the above-mentioned works are related to unimodal text
correction. Recently, (Guo et al., 2019) developed a S2S
spelling correction for ASR system output. The spelling
correction module consists of a 3-layer stacked LSTM S2S
model. The encoder and decoder are both in subword-level
using wordpiece model. Using external language models
for n-best list rescoring further improve the output accu-
racy. (Zhang et al., 2019) proposed a transformer-based S2S
correction model for CTC-based ASR system.

3. Base unimodal ASR system
Due to limited computational resources, we could not afford
S2S model that is as big as the baseline in (Sanabria et al.,
2018). Accordingly, we introduce several techniques that
can improve the performance of S2S ASR systems without
significantly increasing computational costs.

3.1. 2D Pre-convolutional neural network

Unlike normal LAS model solely composed of LSTMs, we
plug 2D pre-convolutional neural networks (CNNs) before
the encoder of LAS model to extract temporal transition
invariance in time domain and spectral invariance in fre-
quency domain, as proposed in (Amodei et al., 2016). This
time-and-frequency domain 2D CNNs transform 40 dimen-
sional MFCC features into new audio features, each frame
of which contains information spanning within the receptive
field of CNNs. Consequently, each time step of following
encoder LSTMs can have a direct access to multiple time
steps of input MFCC features, which finally lead to better
performance of ASR systems. In detail, our 2D pre-CNNs
consists of 4 convolutional layers and expands the dimen-
sion of input MFCC features by 3 times. We did not apply
any pooling or stride (>1) convolution layers, which de-
crease the sequence length of input MFCC features. 2D
pre-CNNs is simultaneously trained with the following LAS
model.

3.2. Listen, attend, and spell (LAS)

As our main speech recognition system, we exploit a com-
mon S2S framework with attention mechanism. The en-
coder is composed of 3 layers of pyramidal LSTM (pLSTM)
layers as in (Chan et al., 2015), and each pLSTM layer
reduces the time dimension by 2 times. This pyramidal
structure allows the encoder to convert low-level input au-
dio features into compact and high-level representations
that can be easily decoded to characters in the following
decoder. The decoder consists of 2 layers of LSTM and uses
attention to calculate contexts from encoder representations.
Contexts obtained with the attention algorithm are concate-
nated with the input embedding and the final LSTM output.
Probabilities for each character is calculated by applying a
fully connected layer and softmax function to the output of
decoder LSTM. The hidden dimensions of the encoder and
the decoder are respectively set to 160 and 320.

3.3. Multi-headed attention

(Chiu et al., 2017) shows that introducing multi-headed
attention into a S2S speech recognition model can signif-
icantly improve the final WER. They empirically demon-
strate that having more than one attention head allows the
decoder to attend to more diverse aspects of encoder repre-
sentations, and thereby reduces the burden on the encoder
of learning ideal representations. For example, one attention
head can focus on the actual speech while the other head
focus on surrounding noise, which consequently helps the
decoder to better distinguish actual speech from noise. Due
to computational limits, we trained with 2 heads while we
observed that adding more heads leads to better WER score
in other datasets. The context dimension of multi-headed
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attention in our experiments is set to 80.

3.4. Scheduled Sampling

While using ground truth labels as an input to decoder facil-
itates learning in the decoder at the early stage of training,
it incurs different behaviors of the model in training and
testing time. To mitigate this problem, (Bengio et al., 2015)
introduces scheduled sampling, which samples the input
token at (i+ 1)-th time step from the softmax distribution
of the i-th time step output with some probability p, instead
of ground truth token. This enables the model to output a
correct token in a less guided scheme, and thereby leads
to better performance in test time. We start training with
the sampling rate p = 0 and gradually increase it to the
maximum value of 0.25 as training progresses.

4. Error analysis of base unimodal system
With all techniques introduced above, our unimodal LAS
shows training WER = 15.4% and test WER = 20.4%. We
further analyze the error distribution in terms of insertion
(I), deletion (D) and substitution (S) errors. Figure 1 shows
error distributions are similar among train, validation, and
test set, and the majority of errors (∼ 60%) are substitution
errors. Therefore, we focus on substitution errors where
the unimodal LAS is making wrong prediction on certain
words.

Figure 1. Error Distribution for unimodal LAS model.

Table 1 summarizes the top-10 substitution errors and exam-
ples of visual-context errors made by unimodal LAS output
on train and test sets. Most errors are 1) functional words or
2) occurred by the lack of high-level contexts. Especially,
the second type of errors occurs mainly due to the fact that
the unimodal ASR system does not have access to high-level
semantic information such as visual context.

5. Method
Based on the above error analysis on unimodal ASR system,
we propose a novel visually grounded ASR error correction

Substitution Pairs Counts

the→ a 44
and→ in 43
in→ and 42
a→ the 41
the→ to 17
that→ the 17
to→ the 15
it→ that 14
can→ could 13
will→ would 13

both→ bow 5
pipe→ pike 4
bedding→ betting 4
talk→ chalk 4
you→ ukulele 4

Table 1. Top-10 substitution errors and examples of visual-context
error in unimodal LAS test output

model and a rescoring scheme in hopes of 1) correcting
functional word errors and 2) incorporating visual informa-
tion as high-level context features in a natural way. The
final transcripts is obtained after rescoring n-best list of error
correction model output with language model and visual-
semantic joint embedding. A schematic illustration of our
ASR system is presented in Figure 2.

5.1. Visually grounded error correction model

Our unimodal error correction model consists of 3-layers
LSTM S2S model with attention mechanism. To address
two problems stated above, we intentionally make our de-
coder word-level (or subword-level). By doing so, we make
features learned in the decoder sufficiently high-level so
that it can be naturally fused with visual information such
as scene and action features extracted from video. In addi-
tion, by having a predefined dictionary for decoder outputs,
we can effectively avoid spelling errors, which is a part
of substitution errors. We set the embedding and hidden
layer sizes for both encoder and decoder to 300 and 512
respectively.

In the visually grounded error correction model, we use
the pretrained 2048-dimensional visual action features and
reduce the dimension to 50 with a trainable linear layer.
Output vector is then concatenated with hidden states of
the last LSTM layers in decoder before outputting softmax
categorical distribution.
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Figure 2. The overall framework of our automated speech recognition system

5.2. Rescoring

By examining the output hypothesis of the error correction
model, we found many of the output hypotheses have the
ground truth in them. We explored the idea to rescore the
n-best list by using offline trained joint embedding and lan-
guage models to pop up the ground truth to the top of the
list. The joint embedding model provides a score (SJE) to
evaluate the word probability based on the most related tran-
scripts retrieved from training dataset given visual feature as
context. The language model provides the perplexity (SLM )
of each sentence in the list. We linearly combine the three
scores: the perplexity score (Sppl) generated by the ASR
error correction model itself, SJE , and SLM . A grid search
is then performed to identify the best hyperparameters α
and β.

Stot = (1− α− β)Sppl + αSJE + βSLM

5.2.1. JOINT EMBEDDING

Constructing a joint representation by projecting different
modalities onto a latent space can bridge the gap between
different modalities (e.g., video, language). In the cross-
modal video-text retrieval task (Mithun et al., 2018), a net-
work is learned to minimize the distance between paired
video clips and text script while keeping a constant mar-
gin between unpaired ones. The retrieval task is performed
to find the nearest neighbors in the latent space. Related
works (Henning & Ewerth, 2018; Karpathy et al., 2014)
have proved that features extracted from video (e.g., scene,

Figure 3. Structure of the joint visual-semantic embedding space

actions, objects etc.) are valuable to efficiently retrieve the
related texts.

In this work, we train a visual-semantic joint embedding
representation of both text and visual features to improve
our ASR error correction system by rescoring the n-best
list based on its high-level visual context. We use a GRU
network to encode the text script as text feature. The trained
model achieves recall (R@1) of 17.6%. Conditional word
probability is calculated based on top-15 retrieved tran-
scripts in the joint embedding space given visual feature
as context. For each sentence in the output n-best list, the
joint embedding score (SJE) is defined as the sum of the
log-probability of each word in that sentence (Naive Bayes
assumption).

5.2.2. LANGUAGE MODEL

A common approach to improve the output sequence accu-
racy in ASR task is to incorporate an external LM (Guo et al.,
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2019; Chan et al., 2015). We implement a language model
to rescore the output n-best list by error correction model
for best candidate sentence. The language model consists of
2-layer unidirectional LSTM for sequence modelling. The
embedding and hidden layer sizes are respectively set to
300 and 512. This external language model is then used to
generate the perplexity as language model scores (SLM ) for
rescoring.

6. Experiments & Discussion
6.1. Data

Throughout our experiments, we use the 300 hours subset
of How2 dataset (Sanabria et al., 2018), which contains
300 hours of videos, sentence-level time alignments to the
ground-truth English subtitles, and Portuguese translations
of English subtitles. Detailed statistics of the dataset is
presented in Table 2.

The visual features used in this paper are identical to fea-
tures used in the previous work (Gupta et al., 2017), which
are action features extracted from pre-trained CNNs. All
ground-truth transcripts are lowercased and every special
character in transcripts is replaced with whitespace.

Videos Hours Clips/Sentences
300h train 13,168 298.2 184,949

val 150 3.2 2,022
test 175 3.7 2,305
held 169 3.0 2,021

Table 2. Statistics of How2 dataset

6.2. Visually grounded error correction

We first experimented different levels of encoders and de-
coders in our unimodal S2S error correction models, in-
cluding word2word, subword2subword, subword2word and

Methods WER(%)

Baseline (LAS) 20.41

+ Error correction (word2word) 26.70
+ Error correction (subword2subword) 23.08
+ Error correction (subword2word) 22.18
+ Error correction (char2word) 20.75
+ EC (c2w)+ Visual 20.37
+ EC (c2w)+ Visual + JE 20.16
+ EC (c2w)+ Visual + LM 20.17
+ EC (c2w)+ Visual + JE + LM 20.15

Table 3. Ablation study on word error rates (WER) of our proposed
ASR system: Error correction, joint embedding, language model.

Substitution Pairs Counts Change

the→ a 46 ↑ 2
and→ in 41 ↓ 2
a→ the 40 ↓ 1
in→ and 39 ↓ 3
that→ the 17 -
to→ the 16 ↑ 1
the→ to 15 ↓ 2
it→ that 14 -
in→ on 13 ↑ 2
can→ could 13 -

Table 4. Top-10 substitution errors in char2word error correction
model test output

Methods I (%) D (%) S (%)

Baseline (LAS) 4.51 3.49 12.41
+ EC + Visual + JE+ LM 4.23 3.80 12.12

Table 5. Error distribution (insertion, deletion and substitution) in
LAS and char2word error correction model test output

char2word. Subword level input is processed using byte
pair encoding (Sennrich et al., 2015), and the vocabulary
size is set to 10k.

As shown in Table 3, the char2word error correction model
show the best performance (WER = 20.75%) among all
models. Two subword level models show slightly higher
WERs (23.08% and 22.18%) compared to char2word model.
Word2word model performs much worse (WER = 26.70%).
We believe this is due to the rare words problem (misspelled
words) in the outputs of the unimodal ASR system, which
are inputs to the encoder of our error correction model. As
most rare words appear only 1∼2 times, it is difficult to
learn meaningful semantic embeddings for those words, and
it consequently makes training of error correction model
noisy and unstable.

Even with our char2word model, we were still not able to
improve WER (20.75%) over the unimodal ASR system
(20.41%). Comparing Table 1 and 4, no significant improve-
ment is found in terms of functional words errors. This is
contradictory to our expectation that S2S model can correct
such errors and improve the performance of ASR systems.
We expect this is mainly due the limited training dataset size
(180k). In addition, functional word errors are not strictly
defined as grammar errors in (Ng et al., 2014). The error
patterns are more vague as they often co-exist with inser-
tion and deletion errors compared to well-defined grammar
errors.

With visual information, the WER score of our error cor-
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rection model improve from 20.75% to 20.37%. Table 5
show that the substitution error is reduced by ∼0.3%, with
visual fusion and rescoring. This demonstrates that visual
information fusion with word-level decoder can improve the
performance of substitution error correction, and achieve
better WER score over the baseline unimodal ASR system.

We believe that the main reason we could not significantly
improve ASR performance with visual information is that
most errors made by the unimodal ASR system are substitu-
tion errors on functional words instead of contextual errors
as shown in Table 1. Therefore, stronger language modeling
capacity and larger training dataset for the error correction
model would be more crucial than having access to high-
level contexts such as visual information. One possible
solution to this problem would be to train language model
on an external large-scale speech transcript corpus and fuse
hidden states of language model and of decoder in the error
correction model. By doing so, we could have a decoder
which is much stronger in terms of language modeling and
possibly prevent functional word errors.

6.3. Rescoring

We further implemented the rescoring scheme to re-rank the
n-best list in our error correction model output. We combine
the perplexity score from visually grounded error correction
model with (1) Joint embedding, (2) Language model and
(3) Joint embedding + Language model.

For (1) and (2), both joint embedding and language model
rescoring show independent 0.2% improvements in WER
to 20.16% and 20.17%, respectively. For (3), we combined
the two rescoring methods with weights α and β for joint-
embedding and language model, and 1 − α − β for error
correction model output perplexity as explained in section
4.3. After parameter search, the optimal parameters are
α = 0.1, β = 0.2 and beam-size = 13. However, we only
see minimal 0.01% improvement to WER = 20.15%. The
results indicate that there is only little room to improve
when combining joint-embedding and language model in
rescoring.

7. Conclusion
In this work, we explored leveraging visual information
on ASR error correction by proposing a visually grounded
S2S error correction model and rescoring scheme. As we
intend to improve the performance of ASR system by 1)
having additional visual contexts and 2) correcting spelling
and functional word errors, our model only shows limited
improvement over the baseline unimodal ASR system. In
following analysis, we demonstrate that the most common
errors made by ASR system are functional word errors,
which cannot be efficiently corrected with additional high-

level contexts such as visual information. We accordingly
insist that, while having additional visual contexts can im-
prove error correction in ASR systems, it is more important
to have stronger language modeling capacity to reduce sub-
stitution errors on functional words.

For future work, we would like to address the differences
between functional words errors and contextual errors. Cur-
rently, such errors are not very well-defined and inser-
tion/deletion/substitution are not adequate in classifying
these two types of errors. We also would like to explore
more sophisticated S2S model to correct these functional
word errors.
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