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Abstract
Leveraging visual modality effectively for Neu-
ral Machine Translation (NMT) remains an open
problem in computational linguistics. We posit
that effectively leveraging visual information re-
quires reconciliation of the high-level visual fea-
tures (e.g., derived from action recognition, scene
descriptions etc.) and low-level text features (at
word or subword level). In this work, we ad-
dress this semantic gap between text and the vi-
sual modality by carefully selecting the places
of fusion of text and visual features for the Ma-
chine Translation task. We propose and evaluate 3
novel techniques, each along a key component in
the Sequence-to-Sequence transduction pipeline,
namely step-wise decoder fusion, multimodal at-
tention modulation and visual-semantic supervi-
sion to effectively leverage the higher-level visual
modality for token prediction. However, we get
only modest incremental gains by the application
of each technique when compared against a strong
Sequence-to-Sequence baseline model, leading
us to the conclusion the features provided in the
How2 dataset do not lend themselves to increas-
ing the discriminativeness between the vocabulary
elements at token level prediction. We further val-
idate this claim by comparing the visual features
against the Multi30K dataset through Principal
Component Analysis, wherein we find that the
How2 visual feature space is even less discrimi-
native in terms of the visual context provided.

1. Introduction
A number of works have explored integrating the visual
modality for Neural Machine Translation (NMT) models
(Sanabria et al., 2018b), though, there has been relatively
modest gains or no gains at all by incorporating the vi-
sual modality in the translation pipeline (Caglayan et al.,
2019). In particular, (Elliott & Kádár, 2017) leverage multi-
task learning, (Sanabria et al., 2018b) use visual adaptive
training, while (Caglayan et al., 2016; Libovickỳ & Helcl,
2017; Huang et al., 2016) use a number of modality fusion

techniques to incorporate features obtained from the visual
modality.

Regarding the seemingly low utility of visual modality in
machine translation, (Lazaridou et al., 2014) hypothesize
that highly relevant visual properties are often not repre-
sented by linguistic models because they are too obvious
to be explicitly mentioned in text (e.g., birds have wings,
violins are brown). Similarly, (Louwerse, 2011) argue that
perceptual information is already sufficiently encoded in
textual cues. However, recently (Caglayan et al., 2019) have
demonstrated that neural models are capable of leveraging
the visual modality for translations, albeit under limited
source side context. We draw upon their work and posit that
since Neural models are capable of leveraging visual modal-
ity under limited source side context, they can be effectively
exploited to enhance the discriminativeness between the vo-
cabulary elements at token level predictions even under the
presence of full linguistic context. To this end, we hypoth-
esize that to effectively use the visual context to improve
token level predictions, we must reconcile the intrinsic fea-
ture abstraction discrepancy between natural language and
visual modalities and to address this problem we propose
three novel techniques to integrate visual features in Neural
Machine Translation.

In the upcoming sections, we first describe the How2 Mul-
timodal Machine translation dataset and the baseline used
throughout the experiments. We then outline our proposed
approaches in detail, followed by experimental results and
analysis of the proposed mechanisms. Finally, we list the
key differences between the proposed techniques and the re-
lated literature and conclude by pointing out a few directions
for further investigation.

1.1. The How2 Dataset

Throughout our experiments, we use the 300 hours subset
of How2 1(Sanabria et al., 2018a) dataset, which contains
300 hours of videos, sentence-level time alignments to the
ground-truth English subtitles, and Portuguese translations
of English subtitles. Detailed statistics of the dataset are pre-
sented in Table 1. The How2 dataset has 2048 dimensional

1Dataset Links https://github.com/srvk/how2-dataset
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pre-trained ResNet embeddings (action features) (Xie et al.,
2017) available for each of the video clips aligned to the
sentences.

Videos Hours Clips/Sentences
300h train 13,168 298.2 184,949

val 150 3.2 2,022
test 175 3.7 2,305
held 169 3.0 2,021

2000h train 73,993 1766.6 -
val 2,965 71.3 -
test 2,156 51.7 -

Table 1. Statistics of How2 dataset

1.2. Baseline Sequence-to-Sequence Model

Our baseline model is the canonical Sequence-to-Sequence
(Seq2Seq) model (Sutskever et al., 2014) consisting of bidi-
rectional LSTM as encoder and decoder, general Bahadanau
attention (Bahdanau et al., 2014) and Length normalization
(Wu et al., 2016). In all cases we use an embedding size of
300 and hidden size of 512.

Further, whenever the visual modality is used, we encode
each of the visual features through a video encoder which is
also trained end-to-end with the Seq2Seq model . Figure 1
outlines all of the proposed techniques, which we describe
later. As illustrated in Figure 1, the Video Frame Encoder
consists of a linear layer, followed by ReLU non-linearity
and a batch norm layer.

2. Proposed Methods
In this section, we describe the three proposed methods.

2.1. Step-Wise Decoder Fusion

Our first proposed technique is the step-wise decoder fusion
of visual modality during every prediction step. The moti-
vation behind this technique comes from the fact the visual
encoding is provided at the sentence level, while the decoder
has to make prediction for the next token at the token level.
Therefore, instead of passing a single visual context at the
beginning of the decoding process as in (Huang et al., 2016),
we concatenate the visual encoding obtained from the video
frame encoder as context at each step of the decoding pro-
cess. Our hypothesis is that by proving the decoder with
the sentence-level visual encoding at each step, the decoder
would be able to leverage the visual encoding for any spe-
cific token prediction, and ignore it when it is not necessary.
This partially solves the problem of the abstraction-level
discrepancy between the features, since the visual encod-
ing now acts as a feature during each prediction step. The

technique is illustrated in Figure 1.

2.2. Multimodal Attention Modulation

Another aspect of the Sequence-to-Sequence model where
the visual modality could be fused to induce more discrimi-
nativeness in the prediction is attention computation.

2.2.1. MOTIVATION

For the proposed technique of multimodal attention modula-
tion, we derive the motivation from a number of neuroimag-
ing studies, which indicate that processing a word activates
areas in the brain that correspond to the associated sensory
modality of its semantic category, e.g. action-related words
like "kick" trigger activity in the motor cortex and object-
related words like cup activate visual areas. Further, it
has been widely accepted that conceptual and sensorimotor
representations interact with each other. (Garagnani & Pul-
vermüller, 2016) In the proposed technique, we model this
interaction through the attention mechanism, which acts a
mediator between modalities. i.e. it modulates the informa-
tion flow in one modality (natural language) by input from
another modality similar to human perception (De Vries
et al., 2017).

2.2.2. MULTIMODAL ATTENTION

We consider a simplified version of the Bahdanau attention
proposed in (Bahdanau et al., 2014). It is referred to as
general attention in (Luong et al., 2015). We first reiterate
the attention mechanism. In general attention, we first con-
sider all the hidden states of the encoder when deriving the
context vector ct. Then, a variable-length alignment vector
at, whose size equals the number of time steps on the source
side, is derived by comparing the current target hidden state
ht with each source hidden state ht. And the score function
is a content based scoring mechanism as described below:

at(s) = align
(
ht,hs

)
at(s) =

exp
(
score

(
ht,hs

))∑
s′ exp

(
score

(
ht,hs′

))
score

(
ht,hs

)
= h>t W ahs

For a multimodal extension of this attention, we propose to
use the encoding obtained from the Video Frame Encoder
to calculate an attention distribution over the source encod-
ings. We use the same form for attention computation as
above except that the visual encoding from the Video frame
encoder is used to compute the scores:
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Figure 1. Decoder of the Visually Grounded Machine Translation Model with various Proposed Components

atv(s) = align
(
vt,hs

)
atv(s) =

exp
(
score

(
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score

(
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))
score

(
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Finally, the true attention distribution is computed as an
interpolation between the visual and text based attention
scores.

at(s) = (1− γ) · at(s) + γ · atv(s)

2.3. Visual-Semantic Supervision

The well-known Stroop effect (Scarpina & Tagini, 2017)
demonstrates the visual and language-processing modali-
ties need to be close in the some "semantic space" to allow
for fast language processing. However, there is no explicit
mechanism in multi-source Sequence-to-sequence models
to allow for this high-level alignment to emerge. In this
section, we explicitly model this condition by using the dis-
tance between visual encoding and the predicted and target
sentence embeddings as a regularizer during the training
stage.

2.3.1. OPTIMAL TRANSPORT LOSS

Our second proposed technique is the inclusion of visual-
semantic supervision to the machine translation model. To

this end we propose a multimodal extension to a recently
proposed distance based loss function. (Chen et al., 2019)
proposed an optimal transport based loss function which
computes the distance between the word embeddings of
the predicted sentence and the target sentence and uses it
as a regularizer. The purpose of this term is to provide
the model with sequence level supervision. We propose
to leverage this idea by including a distance term between
the visual encoding (which is already at the sentence level)
and the target/predicted sentence embeddings as well. The
purpose of this distance term is to provide sequence level
supervision by aligning the visual and text embeddings.
Further, to integrate sequence level supervision, even though
we closely follow and implement the method used in (Chen
et al., 2019), we diverge from the specific parameterization
proposed in (Chen et al., 2019). As in (Chen et al., 2019), at
each time step t, we use an annealing parameter, such that
when the decoder outputs a logit vector vt, it is passed to the
annealed Softmax operator to produce a prediction ŵpred

t =
soft-max( vtτ ), where τ is the the annealing parameter which
is fixed to be 0.01 in our experiments. Further, we multiply
a pair of source and target sequences wpred and wtgt by the
decoder’s word embedding Edec ∈ Rd×V tgt

to obtain their
corresponding vector representations vpred = Edecwpred and
vtgt = Edecwtgt, where V tgt denotes the target vocabulary
size and d is the embedding size. From here, we pass the
vectors vpred and vtgt into the Sinkhorn solver (Cuturi, 2013)
to obtain the entropy-regularized OT distance

Ltgt
ot = W (vpred, vtgt) = min

π∈Π(µpred,µtgt)
〈π,C〉 − εH(π),



Title Suppressed Due to Excessive Size

where µpred and µtgt are probability distributions in-
duced by the bag-of-words representation of vpred and
vtgt, Π(µpred, µtgt) is the collection of joint probabil-
ity distribution with marginals µpred and µtgt, H(π) =
−
∑
i,j πi,j(log(πi,j) − 1) is the discrete entropy, and

Ci,j = c(vpred
i , vtgt

j ) with c = c(x, y) being the cosine simi-
larity. We utilize the Geomloss library 2, which provides a
batched implementation of the Sinkhorn algorithm.

2.3.2. VISUAL-SEMANTIC (VS) REGULARIZER

To implement the proposed Visual Semantic regularizer, we
apply the same procedure described in the previous para-
graph to the vectors wpred, wtgt and wimg to obtain the dis-
tance Limg = W (vpred, vimg) + W (vtgt, vimg). In this case,
the vector vimg is obtained from the video-frame encoder’s
output, which is implemented to have the same embedding
size as the decoder’s embedding Edec. Combining these two
loss terms, our final loss can be expressed as

L = Lmle + Ltgt
ot + Limg,

In practice, we find that that introducing a hyperparameter
in the form below gets the best result:

L = (1− γ) · Lmle + γ · (Ltgt
ot + Limg),

where γ is a hyper-parameter balancing the effect of MLE
and OT. Further, this reparametrization is different from the
one originally proposed (Chen et al., 2019), not only in the
inclusion of new terms with the visual embeddings but also
in that it rescales the maximum-likelihood term.

In practice the distance term to incorporate the visual-
semantic supervision could use any metric in this formula-
tion, not necessarily an Optimal Transport Metric.

3. Results and Analysis
3.1. Experimental Results

For all the translation experiments, we preprocess the data
by lowercasing and removing the punctuations. Whenever
BPE (Sennrich et al., 2015) is used, it is used with 10K
vocabulary on both the source and target side, while the
Sentence piece model (Kudo & Richardson, 2018) is used
with 5K vocabulary on both the source and target sides. The
learning rate is set to 0.001 with Adam Optimizer and a
learning rate decay of 0.5 is used in all the experiments. The
performances of the key models are summarized in Table 2,
along with the gains in BLEU points.

From Table 2, we can make a few observations:

1. The visual modality leads to modest gains in the BLEU
scores. The proposed VS regularizer leads to slightly

2https://github.com/jeanfeydy/geomloss

Methods BLEU Improvement

Baseline (En-Pt) 51.32
+ Decoder Fusion (En-Pt) 51.79 +0.47
+ Multimodal Attention (En-Pt) 51.85 +0.53
+ VS Regularization (En-Pt) 52.00 +0.68

Table 2. BLEU Score Comparison of the proposed methods

Methods BLEU

3 Layers LSTM + BPE (En-Pt) 54.86
Unimodal Transformer + SPM (En-Pt) 55.28

Table 3. BLEU Scores for Specialized NMT Models

higher gain when compared to Decoder-Fusion and At-
tention modulation techniques for the En-Pt language
pair.

2. Table 3 shows the results of training bigger models on
the En-Pt dataset using specialized machine translation
techniques such as subword vocabulary. We find that
using the subword vocabulary and transformer archi-
tectures lead to much larger gains, when compared to
the gains coming from using visual modality on the
baseline 3.

3. Further, the gains due to incorporating the visual
modality are less for Multimodal Attention and VS
Regularization in the case of the reversed language
pair of Pt-En (Table 4), even though the visual modal-
ity is common to both the languages This may be due
to the dataset creation process wherein first the videos
were aligned with English sentences and then the Por-
tuguese translations were created, implying a reduction
in correspondence with the visual modality due to er-
rors introduced in the translation process.

3.2. Discussion

In this subsection, we inspect the dataset as well as the
proposed mechanisms.

3We have submitted the output of the Transformer model as an
entry to the How2 Machine Translation Challenge.

Methods BLEU Improvement

Baseline (Pt-En) 49.12
+ Decoder Fusion (Pt-En) 49.68 +0.56
+ Multimodal Attention (Pt-En) 49.49 +0.37
+ VS Regularization (Pt-En) 49.31 +0.19

Table 4. BLEU Score Comparison of the proposed methods
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Figure 2. Top: Variance Explained by the Top 100 Components.
Bottom: Cumulative Variance Explained by the Top Components.

3.2.1. PCA BASED ANALYSIS OF VISUAL FEATURES

To analyze the reasons for modest gains, despite incorpo-
rating multiple techniques to effectively leverage the visual
modality for machine translation, we conduct an investiga-
tion of feature qualities of the How2 dataset with respect to
the widely used Multi-30K dataset 4. To analyze the discrim-
inativeness of the visual features for both of these datasets,
we leverage an analysis mechanism first used in (Mu &
Viswanath, 2018) in the context of analyzing embedding
discriminativeness.

Figure 2 shows the variance explained by the Top 100 prin-
cipal components, obtained by applying PCA on the How2
and Multi-30K training set visual features. The original
feature dimensions are 2048 in both the cases. It is clear
from the Figure 2 that most of the energy of the visual
feature space resides in a low-dimensional subspace (Mu
& Viswanath, 2018). Figure 2 also shows the cumulative
variance explained by Top 10, 20, 50 and 100 principal
components respectively. It is clear that the visual features
in the case of How2 dataset are much more dominated by
the "common" dimensions, when compared to the Multi-
30K dataset. Further, this analysis is still at the sentence
level, i.e. the How2 visual features are much less discrimi-
native among individual sentences, further aggravating the

4https://github.com/multi30k/dataset

problem at the token level. This leads us to the conclusion
that the How2 visual features aren’t sufficient enough to
expect benefits from the visual modality in Neural Machine
Translation task and the problem of constructing a good
Multimodal Machine translation dataset, as described in
(Caglayan et al., 2019) is still open.

3.2.2. COMPARISON OF VISUAL AND TEXT BASED
ATTENTION

In this section, we analyze the visual and text based attention
mechanisms. We find that the visual attention is very sparse,
in that just one source encoding is attended to, thereby lim-
iting the use of modulation. Thus, in practice, we find that a
small weight (γ = 0.1) is necessary to prevent degradation
due to this sparse visual attention component.

This is also consistent with our observations that the video
encodings are similar for sentences belonging to the same
video. Figure 3 shows the comparison of visual and text
based attention for the source sentence, ‘they do have
salaries they have many sponsors they have managers and
everything like that getting them jobs all the time’ which
is translated to ‘eles têm salários eles têm muitos patroci-
nadores eles têm gerente e tudo assim fazendo trabalhos
o tempo todo’. Further, through inspection we find that
the visual attention usually focuses on verbs/adverbs (e.g.
in Figure 3 it is the word ‘getting’ and in Figure 4, it is
the word ‘down’) or pronouns, although we haven’t ana-
lyzed it quantitatively yet. Figure 4 demonstrates another
comparison of the attention mechanisms, showing the same
behavior.

Further, we would also like to point out an experiment on
the How2 dataset which confirm our conclusion regarding
the very limited discriminativeness of the visual features in
the How2 dataset. We tried to fuse image captioning and
machine translation models by combining the probabilities
at token-level prediction. However, after training a Show-
Attend-and-Tell (Xu et al., 2015) Image captioning model
using the visual features in the How2 dataset, we obtained
very poor results for the captions. We observed that the
captions were getting repeated for different sentences. We
inspected this and found that the video-frame features for
these sentences were either almost same or exactly the same,
further validating our conclusion.

4. Comparison to Related Work
Multimodal Attention: The proposed multimodal atten-
tion technique differs from (Caglayan et al., 2016) in that
we use both the natural language as well as the visual modal-
ities to compute attention over the source sentence, rather
than having attention over images. Since, attention is com-
puted over the same source embeddings (arising from a sin-
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Figure 3. Top: Text Based Attention (Horizontal Direction Repre-
sents the Source Sentence) Bottom: Visual Attention for the same
sentence.

gle encoder), using two different modalities, our approach
also differs from (Libovickỳ & Helcl, 2017), who focus on
combining the attention scores of multiple source encoders.

Step-Wise Decoder Fusion: The proposed step-wise de-
coder fusion approach differs from the usual practice of
passing the visual feature only at the beginning of the de-
coding process (Huang et al., 2016).

Visual-Semantic Supervision: In terms of leveraging the
visual modality for supervision, (Elliott & Kádár, 2017)
use multi-task learning to learn grounded representations
through image representation prediction. However, in this
work, we use the distance between the visual encodings
and the embeddings arising from the target and predicted
sentences as a supervision signal. To our knowledge, visual-
semantic supervision hasn’t been much explored for multi-
modal translation in terms of loss functions.

5. Conclusions and Future Work
To conclude, we tried to draw upon the recent the work
of (Caglayan et al., 2019) to construct techniques to better
leverage the visual modality. Though our results on How2
dataset confirm the general consensus that the visual modal-
ity does not lead to any significant gains, we attribute the

Figure 4. Top: Text Based Attention (Horizontal Direction Repre-
sents the Source Sentence) Bottom: Visual Attention for the same
sentence.

relatively modest gains to limited discriminativeness offered
by the How2 visual features through fine-grained dataset
as well as attention inspection. We hope that our work
could help lead to more useful techniques and better visual
features for multimodal machine translation. We intend to
further extend our work by further experimenting with the
proposed approaches on larger models, constructing more
discriminative features for the visual modality, categorizing
the visual attention distribution in terms of parts of speech
tags as well as analyzing the utility of the grounded repre-
sentations in other tasks.

References
Bahdanau, D., Cho, K., and Bengio, Y. Neural machine

translation by jointly learning to align and translate. arXiv
preprint arXiv:1409.0473, 2014.

Caglayan, O., Barrault, L., and Bougares, F. Multimodal



Title Suppressed Due to Excessive Size

attention for neural machine translation. arXiv preprint
arXiv:1609.03976, 2016.

Caglayan, O., Madhyastha, P., Specia, L., and Barrault,
L. Probing the need for visual context in multimodal
machine translation. arXiv preprint arXiv:1903.08678,
2019.

Chen, L., Zhang, Y., Zhang, R., Tao, C., Gan, Z., Zhang,
H., Li, B., Shen, D., Chen, C., and Carin, L. Improv-
ing sequence-to-sequence learning via optimal transport.
arXiv preprint arXiv:1901.06283, 2019.

Cuturi, M. Sinkhorn distances: Lightspeed computation of
optimal transport. In Burges, C. J. C., Bottou, L., Welling,
M., Ghahramani, Z., and Weinberger, K. Q. (eds.), Ad-
vances in Neural Information Processing Systems 26, pp.
2292–2300. Curran Associates, Inc., 2013.

De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin,
O., and Courville, A. C. Modulating early visual pro-
cessing by language. In Advances in Neural Information
Processing Systems, pp. 6594–6604, 2017.

Elliott, D. and Kádár, A. Imagination improves multimodal
translation. arXiv preprint arXiv:1705.04350, 2017.

Garagnani, M. and Pulvermüller, F. Conceptual grounding
of language in action and perception: a neurocomputa-
tional model of the emergence of category specificity and
semantic hubs. European Journal of Neuroscience, 43(6):
721–737, 2016.

Huang, P.-Y., Liu, F., Shiang, S.-R., Oh, J., and Dyer, C.
Attention-based multimodal neural machine translation.
In Proceedings of the First Conference on Machine Trans-
lation: Volume 2, Shared Task Papers, volume 2, pp.
639–645, 2016.

Kudo, T. and Richardson, J. Sentencepiece: A sim-
ple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint
arXiv:1808.06226, 2018.

Lazaridou, A., Bruni, E., and Baroni, M. Is this a
wampimuk? cross-modal mapping between distributional
semantics and the visual world. In Proceedings of the
52nd Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), volume 1,
pp. 1403–1414, 2014.
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